Skip to content
Generic filters
Exact matches only

Applied Text Mining in Python (Coursera)

This course will introduce the learner to text mining and text manipulation basics. The course begins with an understanding of how text is handled by python, the structure of text both to the machine and to humans, and an overview of the nltk framework for manipulating text.

The second week focuses on common manipulation needs, including regular expressions (searching for text), cleaning text, and preparing text for use by machine learning processes. The third week will apply basic natural language processing methods to text, and demonstrate how text classification is accomplished. The final week will explore more advanced methods for detecting the topics in documents and grouping them by similarity (topic modelling).

This course should be taken after: Introduction to Data Science in Python, Applied Plotting, Charting & Data Representation in Python, and Applied Machine Learning in Python.

Who is this class for: This course is part of “Applied Data Science with Python“ and is intended for learners who have basic python or programming background, and want to apply statistics, machine learning, information visualization, social network analysis, and text analysis techniques to gain new insight into data. Only minimal statistics background is expected, and the first course contains a refresh of these basic concepts. There are no geographic restrictions. Learners with a formal training in Computer Science but without formal training in data science will still find the skills they acquire in these courses valuable in their studies and careers.

Course 4 of 5 in the Applied Data Science with Python Specialization



Module 1: Working with Text in Python

Graded: Module 1 Quiz

Graded: Assignment 1 Submission


Module 2: Basic Natural Language Processing

Graded: Module 2 Quiz

Graded: Assignment 2 Submission


Module 3: Classification of Text

Graded: Module 3 Quiz

Graded: Assignment 3 Submission


Module 4: Topic Modeling

Graded: Module 4 Quiz

Graded: Assignment 4 Submission