Skip to content
BestCerts
Search
Generic filters
Exact matches only

Comparing Genes, Proteins, and Genomes (Bioinformatics III) (Coursera)

After sequencing genomes, we would like to compare them. We will see that dynamic programming is a powerful algorithmic tool when we compare two genes (i.e., short sequences of DNA) or two proteins. When we “zoom out” to compare entire genomes, we will employ combinatorial algorithms.

Once we have sequenced genomes in the previous course, we would like to compare them to determine how species have evolved and what makes them different.

In the first half of the course, we will compare two short biological sequences, such as genes (i.e., short sequences of DNA) or proteins. We will encounter a powerful algorithmic tool called dynamic programming that will help us determine the number of mutations that have separated the two genes/proteins.

In the second half of the course, we will “zoom out” to compare entire genomes, where we see large scale mutations called genome rearrangements, seismic events that have heaved around large blocks of DNA over millions of years of evolution. Looking at the human and mouse genomes, we will ask ourselves: just as earthquakes are much more likely to occur along fault lines, are there locations in our genome that are “fragile” and more susceptible to be broken as part of genome rearrangements? We will see how combinatorial algorithms will help us answer this question.

Finally, you will learn how to apply popular bioinformatics software tools to solve problems in sequence alignment, including BLAST.

Part of the Bioinformatics: Journey to the Frontier of Computational Biology Specialization.

Who is this class for:

This course is primarily aimed at undergraduate-level learners in computer science, biology, or a related field who are interested in learning about how the intersection of these two disciplines represents an important frontier in modern science.