Skip to content
BestCerts
Search
Generic filters
Exact matches only

Natural Language Processing (Coursera)

This course covers a wide range of tasks in Natural Language Processing from basic to advanced: sentiment analysis, summarization, dialogue state tracking, to name a few. Upon completing, you will be able to recognize NLP tasks in your day-to-day work, propose approaches, and judge what techniques are likely to work well.

The final project is devoted to one of the most hot topics in today’s NLP. You will build your own conversational chat-bot that will assist with search on StackOverflow website. The project will be based on practical assignments of the course, that will give you hands-on experience with such tasks as text classification, named entities recognition, and duplicates detection.

Throughout the lectures, we will aim at finding a balance between traditional and deep learning techniques in NLP and cover them in parallel. For example, we will discuss word alignment models in machine translation and see how similar it is to attention mechanism in encoder-decoder neural networks. Core techniques are not treated as black boxes. On the contrary, you will get in-depth understanding of what’s happening inside. To succeed in that, we expect your familiarity with the basics of linear algebra and probability theory, machine learning setup, and deep neural networks. Some materials are based on one-month-old papers and introduce you to the very state-of-the-art in NLP research.

Who is this class for: This course is for those who are interested in NLP field and want to know the current state-of-the-art in research and production. We expect that you have already taken some courses on machine learning and deep learning, but probably have never applied those models to texts and want to get a quick start.

Course 4 of 7 in the Advanced Machine Learning Specialization.

Syllabus

WEEK 1

Intro and text classification

In this module we will have two parts: first, a broad overview of NLP area and our course goals, and second, a text classification task. It is probably the most popular task that you would deal with in real life. It could be news flows classification, sentiment analysis, spam filtering, etc. You will learn how to go from raw texts to predicted classes both with traditional methods (e.g. linear classifiers) and deep learning techniques (e.g. Convolutional Neural Nets).

Graded: Classical text mining

Graded: Predict tags on StackOverflow with linear models

Graded: Simple neural networks for text

WEEK 2

Language modeling and sequence tagging

In this module we will treat texts as sequences of words. You will learn how to predict next words given some previous words. This task is called language modeling and it is used for suggests in search, machine translation, chat-bots, etc. Also you will learn how to predict a sequence of tags for a sequence of words. It could be used to determine part-of-speech tags, named entities or any other tags, e.g. ORIG and DEST in “flights from Moscow to Zurich” query. We will cover methods based on probabilistic graphical models and deep learning.

Graded: Language modeling

Graded: Sequence tagging with probabilistic models

Graded: Recognize named entities on Twitter with LSTMs

WEEK 3

Vector Space Models of Semantics

This module is devoted to a higher abstraction for texts: we will learn vectors that represent meanings. First, we will discuss traditional models of distributional semantics. They are based on a very intuitive idea: “you shall know the word by the company it keeps”. Second, we will cover modern tools for word and sentence embeddings, such as word2vec, FastText, StarSpace, etc. Finally, we will discuss how to embed the whole documents with topic models and how these models can be used for search and data exploration.

Graded: Word and sentence embeddings

Graded: Find duplicate questions on StackOverflow by their embeddings

Graded: Topic Models

WEEK 4

Sequence to sequence tasks

Nearly any task in NLP can be formulates as a sequence to sequence task: machine translation, summarization, question answering, and many more. In this module we will learn a general encoder-decoder-attention architecture that can be used to solve them. We will cover machine translation in more details and you will see how attention technique resembles word alignment task in traditional pipeline.

Graded: Introduction to machine translation

Graded: Encoder-decoder architectures

Graded: Learn to calculate with seq2seq model

Graded: Summarization and simplification

WEEK 5

Dialog systems

This week we will overview so-called task-oriented dialog systems like Apple Siri or Amazon Alexa. We will look in details at main building blocks of such systems namely Natural Language Understanding (NLU) and Dialog Manager (DM). We hope this week will encourage you to build your own dialog system as a final project!

Graded: Task-oriented dialog systems

Graded: StackOverflow Assistant

Graded: Custom conversational model

ENROLL IN COURSE