This course gives you access to basic tools and concepts to understand research articles and books on modern quantum optics. You will learn about quantization of light, formalism to describe quantum states of light without any classical analogue, and observables allowing one to demonstrate typical quantum properties of these states.

These tools will be applied to the emblematic case of a one-photon wave packet, which behaves both as a particle and a wave. Wave-particle duality is a great quantum mystery in the words of Richard Feynman. You will be able to fully appreciate real experiments demonstrating wave-particle duality for a single photon, and applications to quantum technologies based on single photon sources, which are now commercially available. The tools presented in this course will be widely used in our second quantum optics course, which will present more advanced topics such as entanglement, interaction of quantized light with matter, squeezed light, etc…

So if you have a good knowledge in basic quantum mechanics and classical electromagnetism, but always wanted to know:

• how to go from classical electromagnetism to quantized radiation,

• how the concept of photon emerges,

• how a unified formalism is able to describe apparently contradictory behaviors observed in quantum optics labs,

• how creative physicists and engineers have invented totally new technologies based on quantum properties of light,

then this course is for you.

Who is this class for: This course is primarily intended for university students who have a good knowledge of basic quantum mechanics and classical electromagnetism, and who want to enter in the field of quantum optics. It is also intended for engineers who want to catch up with the rapidly developing quantum technologies derived from the second quantum revolution, in which the observation and control of single quantum objects, such as single photons, is a key ingredient.

ENROLL IN COURSE